NEWS BRIEFS

CASIIS Awards First Space Station Research Grants

In the first formal grant awarded in its short history, the Center for the Advance ment of Science In Space (CASIIS) — the Florida nonprofit that manages non-NASA science on the international space station — announced three scientists will share $1.2 million in funding for space-based proton crystal growth research. According to a Nov. 1 CASIIS press release, the winning principal investigators and their experiments are:

- Stephen Allen, the University of Alabama at Birmingham. Allen’s proposal focuses on crystallizing human bladder cancer cells that could be used in drug research to treat AIDS-related dementia, high cholesterol, attherosclerosis, carrier illnesses, and cancer-related multi-drug resistance.

- Danielle Bjorkman, the California Institute of Technology. Bjorkman’s research will focus on crystallization research related to Huntington’s disease, a genetic condition that causes cognitive and neurological degeneration.

- Joseph Ng, iXpressoGen Inc. Ng proposes growing large protein crystals aboard the space station for neutron diffraction studies. The only privately operated awarded.

On CASIIS’s list, iXpressoGen is affiliated with the Huntsville, Ala-based FluidsAl pha Institute for Biotechnology, according to the company’s website.

CASIIS did not say how much funding each winner would get. The selected projects were chosen from among 16 competing proposals, a panel of space science experts pooled by CASIIS earlier this year, the group said in its press release. CASIIS solicited re quests for these proposals in June.

Under a cooperative agreement awarded in 2011, CASIIS paid $10 million a year in federal funding. Of that amount, about $5 million a year is reserved for grants. Speaking man Bobby Block said in May, CASIIS said then that it planned to give station based-proton crystal growth experiments each priority for funding.

CASIIS does not provide financing for space station-based research beyond the $5 million in federal grant money it administers. The organization was created to be an intermediary between researchers, launch providers, NASA’s space station office and investors.

CASIIS was created last year to fulfill a mandate in the 2005 NASA Authorization Act that designated half of the space station’s U.S. operating segment a National Laboratory. The mandate, passed by Sen. Kay Hagan (D-N.C.), also called for NASA to outsource management of the National Lab to a nonprofit.

Curiosity Rover Finds No Methane on Mars — Yet

NASA’s Mars rover Curiosity has detected no methane in its first analyses of the martian atmosphere — news that will undoubtedly disappoint those who hope to find life on the red planet.

Long arguments produce more than 90 percent of the methane found in Earth’s atmosphere, so scientists are keen to see if Curiosity picks up any of the gas in Mars’ air. But the 1-ton rover has come up empty in the first atmospheric measurements taken with its Sample Analysis at Mars instrument, or SAM, researchers announced Nov. 2.

“The bottom line is that we have no detection of methane to date,” Chris Webster of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., told reporters.

“But we’re going to keep looking in the months ahead since Mars, as we all know, may yet hold surprises for us,” added Webster, who is instrument lead for SAM’s Tunable Laser Spectrometer.

Scientists have detected methane in Mars’ atmosphere before, using a variety of instruments on the ground and in space. But measured concentrations of the gas have been quite low, ranging from 10 to 50 parts per billion or so.

The lack of detection by SAM does not necessarily mean these previous observations are wrong, researchers said. Methane concentrations may vary somewhat by region and over time.

“At this time, we don’t have a positive detection of methane on Mars,” said pauls Arney of the University of Michigan, a SAM co-investigator. “But that could change over time, depending on how methane is produced and how it is destroyed on Mars.”

Possible biosynthetic sources of methane include methane oxidizers, degradation of interstellar dust that may be ultraviolet (light) and water-impacted interactions, researchers said. And the gas may be destroyed by photochemical reactions in the atmosphere or absorbed by the martian surface.

Scientists believe that Mars’ methane “slids” are quite efficient, removing the gas from the atmosphere every few hundred years. That means any methane present in the red planet’s air was likely generated recently.

The new atmospheric measurements — based primarily on a few curiosities — t suggest that Earth could be one of the few planets capable of supporting life. Some organic compounds in the atmosphere may contain amino acids, but that could change over time, depending on how methane is produced and how it is destroyed on Mars.”